Rabu, 30 Maret 2016

Responses of Spectral Indices to Variations inVegetation Cover and Soil Background
Stella W. Todd and Roger M. Hoffer

Abstract
The primary objective of this study was to evaluate the effects of variations in soil texture and moisture upon the green vegetation index (GVI)and the normalized difference vegetation index (NDVI) for targets with specific vegetation cover amounts and varying soil backgrounds. The second objective was to understand the difference in information provided between NDVI and GVI relative to estimating vegetation cover. The third objective was to investigate the information contained within the wetnesdbrigh tness plane in relation to soil background characteristics and variations in percent canopy cover. Brightness and wetness were estimated using the Tasseled Cap brightness index (BI) and wetness index (wI]. A simple two-component model of soil and green vegetation reflectance was used to simulate the effects of three soil texture types (sand, silt, and clay] and two soil moisture classes on greenness, brightness, and wetness values. The results indicated that, for the same vegetation percent cover class, targets with more moist soil backgrounds displayed higher NDVI values than did targets with more dry soil backgrounds. In contrast, GVI values were much less influenced by soil background variation. WI values increased as green vegetation cover increased for all soil backgrounds.bThe largest increase was for dry soil backgrounds. BI values either increased or decreased as green vegetation cover increased, depending on soil background brightness. BI and WI provided complimentary spectral information.
Introduction
One of the most promising applications of remote sensing imagery is for the estimation of aboveground plant biomass and/or plant cover across multiple geographic scales. For global or continental scales, the Advanced Very High Resolution Radiometer (AVHRR) is currently the only realistic option for biomass estimation. Its large spatial extent, daily temporal coverage, and low cost facilitate seasonal and yearly estimates of biomass production. Limitations include a relatively large spatial resolution (1 km) and few spectral reflectance channels (one visible and one near-infrared). Biomass across large geographic areas has primarily been estimated using the normalized difference vegetation index (NDVI), which is based on the ratios of red and near-infrared channels (Rouseet al., 1973). The NDVI formulation is identical for AVHRR, the Multispectral Scanner ( ~ s s ) , and the Thematic Mapper (TM) satellite sensors, with the only variation being the width of visible and near-infrared wavebands.
For small geographic regions, sensors other than AVHRR can be employed for biomass estimation, which overcome some of AVHRR'S spatial and spectral resolution limitations. The M ~ S with its smaller spatial resolution (80 m) and increased spectral reflectance resolution (two visible and two near-infrared) expanded the capacity of satellite sensors to
characterize physical scene reflectance characteristics. Vegetation and soil indices utilizing four spectral channels were now possible. The four-band Tasseled Cap orthogonal linear transformation, developed by Kauth and Thomas (1976),produced a plane of data in which the primary axis aligned with soil reflectance variation (brightness) and the secondary axis aligned with green vegetation (greenness] variation. Virtually all of the soil variation observed is arranged in a longcigar-shaped cloud centered along the brightness axis for M s s data.
The TM satellite further increased the spatial (30 m) and spectral resolution (three visible, one near-infrared, and two mid-infrared) for characterizing physical object reflectances. The mid-inhared TM bands are coincident with the water absorption regions of the spectrum (Hoffer, 1978). Mid-infrared band reflectances are incorporated into the Tasseled Cap dimension of total scene reflectance (brightness). They are also contrasted with the near-infrared bands to form the dimension of scene moisture (wetness).In TM space, soil variation is represented by both the brightness and wetness axes, creating a two-dimensional plane (Crist, 1983; Crist and Cicone, 1984).  The wetness axis is sensitive to both soil moisture and vegetation moisture (Crist and Cicone, 1984).
We were interested in determining which spectral indices would be useful for characterizing variation in green vegetation biomass across small regions with heterogenous soil background characteristics. We therefore focused on TM indices for this study. One of the major problems in determining the quantity of green vegetation using satellite sensors is that the spatial resolution of the sensors is generally larger than the vegetation objects. This is true for TM as well as for MSS and AVHRR. Therefore, pixel measurements represent an integration of subpixel reflectance components of soil, vegetation, the reflectance interaction between soil and vegetation, and shadows, all modified by atmosphere (Richardson and Weigand, 1990; Jasinski and Eagleson, 1989).
Several research results have been reported concerning the effects of soil background on ratio-based and orthogonal vegetation index values (Elvidge and Lyon, 1985; Gardner and Blad, 1986; Huete and Jackson, 1987; Huete et al., 1984; Huete et al., 1985; Tueller, 1987). Previous studies showed that backgrounds containing dark colored soils and other low reflecting soils displayed higher TM ratio-based vegetation index values ( N D ~ ) than did light colored soils or other high reflecting soils, given the same vegetation cover (Elvidge and Lyon, 1985; Huete et al., 1985; Huete and Jackson, 1987;Huete and Jackson, 1988; Heilman and Boyd, 1986).
Soil reflectance properties depend on numerous soil characteristics. Field soil reflectance is reduced, particularly in the visible portion of the spectrum, when organic matter, iron oxides, or moisture content is high (Hoffer, 19781. The near-infrared and mid-infrared regions of the spectrum are also affected. Soil has an easily distinguishable characteristic reflectance pattern in the visible, near-infrared and mid-infrared wavelengths. Soil reflectance patterns are generally linear with increasing reflectance as wavelengths increase from visible to mid-infrared.
The characteristic soil reflectance pattern is easily distinguishable from green vegetation (Bartolucci, 1977).Green vegetation reflectance is low for the visible bands (particularly red), with a sharp increase in reflectance in the near-infrared portion of the spectrum. Reflectance is also low in the midinfrared regions associated with water absorption. Physical vegetation properties vary with plant species, environmental stress, and phenology (Hoffer, 1978). Pigmentation and moisture content change as a plant senesces. A loss of chlorophyll pigmentation produces higher visible reflectance, particularly in the red region of the spectrum (Hoffer, 1978). Plant drying also increases visible and mid-inbared reflectance.
Some of the soil induced effects on vegetation indices have been attributed to additional NIR irradiance underneath and in-between canopies due to NIR scattering and transmission properties of the canopy, with intermediate canopies displaying the largest effect (Huete, 1988). Canopy scattering is small with low vegetation cover while the soil signal is small with high vegetation cover. Soil reflects some of the scattered and transmitted NIR flux back toward the sensor,depending upon the soil's reflectance properties.
NIR absorbtance, transmittance, scattering, and reflectance can be modeled based on the physical properties of plant canopies and soil (Suits, 1972; Verhoeff and Bunnik,1981; Verhoef, 1984; Verhoef, 1985). These models were developed for homogeneous plant canopies assuming fixed [Suits modell or arbitrarilv [SAIL model1 inclined leaves (suits, 1972;'verhoeff and ~ u n n i k , l98i). In a comparative study, the Suits and SAIL models were poorly to moderately correlated, respectively, with observed reflectance measurements for homogeneous crops (Badhwar et al., 1985). Modeling heterogeneous canopies would require even greater complexity than homogeneous canopies.
Another approach to modeling canopy reflectance conceptualizes clumps of vegetation as three-dimensional geometric elements against a flat soil background (Jasinskiand Eagleson, 1989).This type of model assumes that soil and vegetation are independent contributors to spectral reflectance. In addition, the effects of canopy shadows can be modeled based on plant size, shape, and geometric distribution. The simplest case is at the nadir view angle where the shadow component drops out. The geometric model can be applied to landscapes using statistical plant distribution patterns (Li and Strahler, 1985).
Previous studies have described methods to minimize soil background effects given a priori knowledge about canopy cover (Huete, 1988) or soil background characteristics (Jackson, 1983). Canopy cover information is often unknown. Realistically, real-time soil background reflectance information is not available. Soil moisture conditions are dynamic and spatially variable even within a small region. Therefore, vegetation indices which are insensitive to differing soil backgrounds are desirable for determining vegetation biomass and/or vegetation cover on small fields or across regions.
While a study by Huete et al. (1985) provided some insights into the limitations of NDVI and GVI for estimating vegetation cover, it focused only on soil brightness variation.
Within TM data, soil reflectance characteristics are distributed in a plane defined by wetness as well as brightness. Therefore, normalization to minimize soil related influences on vegetation indices should be based on the more expanded soil plane information (Huete and Tucker, 1991). Understanding the relationship of both soil type and moisture content with brightness and wetness dimensions and their interaction with greenness values for pixels containing both vegetation and soil components should precede the development of soil normalization applications. This study will investigate wetness as well as brightness characteristics in relation to vegetation index responses to variations in green vegetation canopy cover as well as variations in soil type and moisture content, using a simple two component model of soil and vegetation.

Objectives
The first objective of this study was to evaluate the effects of variations in soil texture and moisture upon the green vegetation index (GVI) and the normalized difference vegetation index (NDVI) for targets with specific vegetation cover amounts and varying soil backgrounds. The second objective was to understand the difference in information provided between NDVI and GVI relative to estimating vegetation cover. The third objective was to investigate the information contained within the wetness and brightness axes in relation to soil background characteristics and variations in percent canopy cover.

Methods
A composite reflectance (soil and green vegetation) was estimated using a simple two-component model, assuming that observations were from nadir, the sun was near zenith, and vegetation and soil components contributed proportionately to the total reflectance. Vegetation and soil components were modeled as linear, non-interacting mixtures. Variation in soil tvDe and moisture content ~roduced variations in soil reflecd 1 tance properties. Vegetation reflectance properties were those of green healthy vegetation only. Variations in reflectances due to vegetation senescence, soil color or organic matter.

Jumat, 22 Januari 2016

Kumpulan Puisi Chairil Anwar.
 Aku
Kalau sampai waktuku
‘Ku mau tak seorang ‘kan merayu
Tidak juga kauTak perlu sedu sedan ituAku ini binatang jalang
Dari kumpulannya terbuangBiar peluru menembus kulitku
Aku tetap meradang menerjangLuka dan bisa kubawa berlari
Berlari
Hingga hilang pedih periDan akan akan lebih tidak perduli
Aku mau hidup seribu tahun lagi
TAK SEPADAN
Aku kira:
Beginilah nanti jadinya
Kau kawin, beranak dan berbahagia
Sedang aku mengembara serupa Ahasveros
 
Dikutuk-sumpahi Eros
Aku merangkaki dinding buta
Tak satu juga pintu terbuka
 
Jadi baik juga kita padami
Unggunan api ini
Karena kau tidak ‘kan apa-apa
Aku terpanggang tinggal rangka
 
Februari 1943

Senja di Pelabuhan Kecil
Buat Sri Ayati

Ini kali tidak ada yang mencari cinta
di antara gudang, rumah tua, pada cerita
tiang serta temali. Kapal, perahu tiada berlaut
menghembus diri dalam mempercaya mau berpaut
Gerimis mempercepat kelam. Ada juga kelepak elang
menyinggung muram, desir hari lari berenang
menemu bujuk pangkal akanan. Tidak bergerak
dan kini tanah dan air tidur hilang ombak
Tiada lagi. Aku sendiri. Berjalan
menyisir semenanjung, masih pengap harap
sekali tiba di ujung dan sekalian selamat jalan
dari pantai keempat, sedu penghabisan bisa terdekap.
Cintaku Jauh di Pulau
Cintaku jauh di pulau
Gadis manis, sekarang iseng sendiri
Perahu melancar, bulan memancar
di leher kukalungkan ole-ole buat si pacar
angin membantu, laut terang, tapi terasa
aku tidak ‘kan sampai padanya
Di air yang tenang, di angin mendayu
di perasaan penghabisan segala melaju
Ajal bertakhta, sambil berkata:
“Tujukan perahu ke pangkuanku saja.”
Amboi! Jalan sudah bertahun kutempuh!
Perahu yang bersama ‘kan merapuh
Mengapa Ajal memanggil dulu
Sebelum sempat berpeluk dengan cintaku?!
Manisku jauh di pulau,
kalau ‘ku mati, dia mati iseng sendiri.
Kawanku dan Aku
Kami sama pejalan larut
Menembus kabut
Hujan mengucur badan
Berkakuan kapal-kapal di pelabuhan
Darahku mengental pekat. Aku tumpat pedat
Siapa berkata-kata?
Kawanku hanya rangka saja
Karena dera mengelucak tenaga
Dia bertanya jam berapa?
Sudah larut sekali
Hilang tenggelam segala makna
Dan gerak tak punya arti

Kepada Kawan

Sebelum ajal mendekat dan mengkhianat,
mencengkam dari belakang ‘tika kita tidak melihat,
selama masih menggelombang dalam dada darah serta rasa,
belum bertugas kecewa dan gentar belum ada,
tidak lupa tiba-tiba bisa malam membenam,
layar merah berkibar hilang dalam kelam,
kawan, mari kita putuskan kini di sini:
Ajal yang menarik kita, juga mencekik diri sendiri!
Jadi
Isi gelas sepenuhnya lantas kosongkan,
Tembus jelajah dunia ini dan balikkan
Peluk kucup perempuan, tinggalkan kalau merayu,
Pilih kuda yang paling liar, pacu laju,
Jangan tambatkan pada siang dan malam
Dan
Hancurkan lagi apa yang kau perbuat,
Hilang sonder pusaka, sonder kerabat.
Tidak minta ampun atas segala dosa,
Tidak memberi pamit pada siapa saja!
Jadi
mari kita putuskan sekali lagi:
Ajal yang menarik kita, ‘kan merasa angkasa sepi,
Sekali lagi kawan, sebaris lagi:
Tikamkan pedangmu hingga ke hulu
Pada siapa yang mengairi kemurnian madu!!!
Doa
kepada pemeluk teguh
Tuhanku
Dalam termangu
Aku masih menyebut namaMu
Biar susah sungguh
mengingat Kau penuh seluruh
cayaMu panas suci
tinggal kerdip lilin di kelam sunyi
Tuhanku
aku hilang bentuk
remuk
Tuhanku
aku mengembara di negeri asing
Tuhanku
di pintuMu aku mengetuk
aku tidak bisa berpaling
Kepada Peminta-minta
Baik, baik, aku akan menghadap Dia
Menyerahkan diri dan segala dosa
Tapi jangan tentang lagi aku
Nanti darahku jadi beku
Jangan lagi kau bercerita
Sudah tercacar semua di muka
Nanah meleleh dari muka
Sambil berjalan kau usap juga
Bersuara tiap kau melangkah
Mengerang tiap kau memandang
Menetes dari suasana kau datang
Sembarang kau merebah
Mengganggu dalam mimpiku
Menghempas aku di bumi keras
Di bibirku terasa pedas
Mengaum di telingaku
Baik, baik, aku akan menghadap Dia
Menyerahkan diri dan segala dosa
Tapi jangan tentang lagi aku
Nanti darahku jadi beku
Cerita Buat Dien Tamaela
Beta Pattirajawane
Yang dijaga datu-datu
Cuma satu
Beta Pattirajawane
Kikisan laut
Berdarah laut
Beta Pattirajawane
Ketika lahir dibawakan
Datu dayung sampan
Beta Pattirajawane, menjaga hutan pala
Beta api di pantai. Siapa mendekat
Tiga kali menyebut beta punya nama
Dalam sunyi malam ganggang menari
Menurut beta punya tifa,
Pohon pala, badan perawan jadi
Hidup sampai pagi tiba.
Mari menari!
mari beria!
mari berlupa!
Awas jangan bikin beta marah
Beta bikin pala mati, gadis kaku
Beta kirim datu-datu!
Beta ada di malam, ada di siang
Irama ganggang dan api membakar pulau…
Beta Pattirajawane
Yang dijaga datu-datu
Cuma satu
Sebuah Kamar
Sebuah jendela menyerahkan kamar ini
pada dunia. Bulan yang menyinar ke dalam
mau lebih banyak tahu.
“Sudah lima anak bernyawa di sini,
Aku salah satu!”
Ibuku tertidur dalam tersedu,
Keramaian penjara sepi selalu,
Bapakku sendiri terbaring jemu
Matanya menatap orang tersalib di batu!
Sekeliling dunia bunuh diri!
Aku minta adik lagi pada
Ibu dan bapakku, karena mereka berada
d luar hitungan: Kamar begini
3 x 4, terlalu sempit buat meniup nyawa!
Hampa
Kepada Sri
Sepi di luar. Sepi menekan-mendesak
Lurus kaku pohonan. Tak bergerak
Sampai di puncak. Sepi memagut,
Tak satu kuasa melepas-renggut
Segala menanti. Menanti. Menanti
Sepi
Tambah ini menanti jadi mencekik
Memberat-mencengkung punda
Sampai binasa segala. Belum apa-apa
Udara bertuba. Setan bertempik
Ini sepi terus ada. Dan menanti.
 
PRAJURIT JAGA MALAM
Waktu jalan. Aku tidak tahu apa nasib waktu ?
Pemuda-pemuda yang lincah yang tua-tua keras,
bermata tajam
 
Mimpinya kemerdekaan bintang-bintangnya
kepastian ada di sisiku selama menjaga daerah mati ini
 
Aku suka pada mereka yang berani hidup
Aku suka pada mereka yang masuk menemu malam
 
Malam yang berwangi mimpi, terlucut debu
Waktu jalan. Aku tidak tahu apa nasib waktu!
 
YANG TERAMPAS DAN YANG PUTUS 
Kelam dan angin lalu mempesiang diriku,
Menggigir juga ruang di mana dia yang kuingin,
 
Malam tambah merasuk, rimba jadi semati tugu
Di Karet, di Karet (daerahku y.a.d) sampai juga deru dingin
 
Aku berbenah dalam kamar, dalam diriku jika kau datang dan aku bisa lagi lepaskan kisah baru padamu;
 
Tapi kini hanya tangan yang bergerak lantang
Tubuhku diam dan sendiri, cerita dan peristiwa berlalu beku.
 
RUMAHKU
Rumahku dari unggun-timbun sajak
Kaca jernih dari luar segala nampakKulari dari gedong lebar halaman
Aku tersesat tak dapat jalanKemah kudirikan ketika senjakala
Di pagi terbang entah ke manaRumahku dari unggun-timbun sajak
Di sini aku berbini dan beranakRasanya lama lagi, tapi datangnya datang
Aku tidak lagi meraih petang
Biar berleleran kata manis madu
Jika menagih yang satu27 april 1943 
PERSETUJUAN DENGAN BUNG KARNO
Ayo ! Bung Karno kasi tangan mari kita bikin janji
Aku sudah cukup lama dengan bicaramu
dipanggang diatas apimu, digarami lautmu
Dari mulai tgl. 17 Agustus 1945
Aku melangkah ke depan berada rapat di sisimu
Aku sekarang api aku sekarang laut
Bung Karno ! Kau dan aku satu zat satu urat
Di zatmu di zatku kapal-kapal kita berlayar
Di uratmu di uratku kapal-kapal kita bertolak & berlabuh
 
SAJAK PUTIH
Bersandar pada tari warna pelangi
Kau depanku bertudung sutra senja
Di hitam matamu kembang mawar dan melati
Harum rambutmu mengalun bergelut sendaSepi menyanyi, malam dalam mendoa tiba
Meriak muka air kolam jiwa
Dan dalam dadaku memerdu lagu
Menarik menari seluruh aku
Hidup dari hidupku, pintu terbuka
Selama matamu bagiku menengadah
Selama kau darah mengalir dari luka
Antara kita Mati datang tidak membelah…
1944

Kamis, 21 Januari 2016

PEMBUATAN WILAYAH CURAH HUJAN (POLYGON THIESSEN)

Bagi teman-teman yang sering menggunakan Arc GIS 9.3, saya mau sharingilmu “Bagaimana Membuat Polygon Thiessen Menggunakan Arc GIS 9.3”. Langkah kerjanya sebagai berikut :
§  Siapkan data koordinat untuk semua stasiun curah hujan yang akan digunakan di excel (harus office 2003). Bentuk formatnya seperti di bawah ini.

§  Buka Arc GIS 9.3
§  Pilih Tools dan klik Add X Y data

Buka file excel dengan mengklik Amplop kuning, sesuaikan sheetnya
Pilih X dan Y, sesuaikan dengan judul kolom pada excel
Klik edit, sesuaikan dengan lokasi peta

Maka hasilnya akan seperti ini.

§  Export titik ke file .shp
Klik kanan pada peta, pilih data, klik export data
Simpan file dan beri nama dengan klik amplop kuning.
Klik OK


§  Klik ArcToolBox
Pilih search  dan isi pada create thiessen polygons dan klik tulisan tersebut dan akan muncul box ini.
Pada Input Features, pilih sesuai file yang ingin dibuat polygon thiessennya.
Pilih file output akan disimpan dan beri nama file, dengan mengklik iconoutput features class
Klik OK

Hasilnya akan seperti ini.

§  Add peta wilayah yang akan di clip dengan Peta Polygon Thieesen

§  Klik ArcToolBox
Pilih Analysis Tools, Klik Extact, Pilih Clip
Pada Input Features, pilih Peta Polygon Thiessen
Pada Clip Features, pilih Peta yang akan diclipkan dengan Peta Polygon Thiessen
Pilih file output akan disimpan dan beri nama file, dengan mengklik iconoutput features class
Klik OK


§  Selesai